
Chapter 1
The Memory Function of Sleep Across
the Life Span

Laura Burton Faina Kurdziel

Abstract Sleep is the single most common form of human behavior, indicating that
sleep likely has an important evolutionary function. Yet the functions of sleep are
still debated. Intriguingly, sleep is not static across the life span, changing in
duration, pattern, structure, and physiology. This chapter reviews the transforma-
tions of sleep, from the first appearance of sleep prenatally to sleep in older
adulthood, and assesses how the functions of sleep may change in response. This
review focuses on the memory function of sleep and examines sleep-dependent
consolidation across declarative, procedural, and emotional memory domains. With
respect to the memory function of sleep, changes in SWS in particular appear to have
the greatest impact on the resultant age-related alterations in sleep-dependent mem-
ory consolidation.

Keywords Sleep · Development · Adolescence · Aging · Slow Wave Sleep ·
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1.1 Introduction

Across the human life span, approximately a quarter of a century is spent asleep
(Martin 2002). This makes sleep the most prevalent of all human behaviors. Why so
much of life is dedicated to this behavior, during which no resources or reproductive
mates can be attained, is one of the greatest unsolved scientific mysteries.
Researchers have debated the function, or functions, of sleep for years (Franken
et al. 2009). Studies have examined the role of sleep through many different lenses,
including but not limited to genetic, neurological, immunological, behavioral, and
epidemiological perspectives. The aim of this chapter is not to attempt to answer the
question of why we sleep, nor to be a comprehensive review of all of the potential
functions of sleep. Rather, this chapter will examine how these potential functions of
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sleep may change throughout the life span, as individuals progress from early
prenatal development to older adulthood. This chapter will also center primarily
on these changes throughout human development and with an additional focus on
the way sleep may impact cognition and memory.

1.2 Young Adults

1.2.1 Sleep in Young Adults

Sleep is defined as a reversible period of behavioral quiescence with a high arousal
threshold (Carskadon and Dement 2005). The adult form of sleep will be considered
a baseline from which to compare the development and degradation of sleep across
the life span. As such, it is important to describe the architecture and neural
underpinnings of adult human sleep.

Sleep is not a static behavioral state. Adult human sleep can be subdivided into
two states, rapid eye movement (REM) sleep and non-REM (nREM) sleep. Further,
nREM sleep can be subdivided into three sleep stages: nREM1, nREM2, and
nREM3 (nREM3 is also known as slow-wave sleep (SWS)). Each sleep stage is
physiologically unique and can be characterized through polysomnography (PSG), a
montage of electroencephalogram (EEG) waveforms, muscle movements measured
by electromyogram (EMG), and eye movements as measured by electrooculogram
(EOG; Carskadon and Dement 2005).

In healthy adults, sleep is entered through nREM and characteristically progresses
in order of sleep depth (nREM1, followed by nREM2, and then SWS). REM sleep
does not usually occur for at least 80 min, after which nREM and REM sleep alternate
in cycles lasting approximately 90 min each (Carskadon and Dement 2005). Typi-
cally, total sleep time is about 7–8 h in a healthy young adult. While there may be
trait-like inter-individual differences (Tucker et al. 2007), as well as potential sex
differences (Mongrain et al. 2005) in sleep physiology, the architecture of sleep
staging appears to be fairly consistent. Sleep architecture has also been shown to be
stable across both morning and evening chronotypes (Mongrain et al. 2005).

The transition from waking to nREM sleep is generated in the hypothalamus
(Siegel 2009). During this transition, there is a global reduction in neuronal firing
rates, as well as more specific regional reductions (e.g., frontal gyri, anterior
cingulate cortex, posterior putamen, caudate nucleus, midbrain, basal forebrain,
and inferior cerebellar hemispheres; Braun et al. 1997; Kaufmann et al. 2006). The
global reduction of neuronal activation is a result of GABA input from the thalamic
reticular nucleus (Steriade 2001). Specifically, the sensory-relay function of the
thalamus is inhibited, thus contributing to the unconscious state and to the high
arousal threshold that defines sleep. Contrarily, endogenous cortico-cortical neuro-
nal activation increases in nREM sleep (Steriade 2000, 2001).

Slow oscillations, oscillatory waves in the 0–1 Hz frequency range, are a core
feature of nREM sleep. They are the result of cortical neurons cycling through an
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extended hyperpolarization (downstate) phase, followed by a phase of spontaneous
and intense neuronal firing (Steriade 2000, 2001). This intense state of depolariza-
tion (upstate) also plays a major role in synchronizing neuronal activity across the
cortex as well as additional subcortical structures.

For example, the upstate of the slow oscillation synchronizes the initiation of
thalamic sleep spindles. Sleep spindles are bursts of activity in the sigma (10–16 Hz)
frequency range that can be observed in nREM sleep. Spindles originate from
inhibitory thalamic reticular neurons, of which activation leads to bursting in linked
cortical neurons (Achermann and Borbély 1997; De Gennaro and Ferrara 2003;
Schabus et al. 2007). The resultant depolarization of cortical neurons from sleep
spindles has been suggested to lead to intensive calcium influx, which in turn
activates a number of processes within the neuron necessary for long-term potenti-
ation (Ghosh and Greenberg 1995), such as calcium/calmodulin-dependent protein
kinase II (CaMKII; Soderling and Derkach 2000; Lisman et al. 2002). Thus, sleep
spindles have been specifically implicated in synaptic plasticity of excitatory neu-
rons (Steriade and Timofeev 2003) and in learning and memory more generally
(Fogel et al. 2007a; Fogel and Smith 2011; Ulrich 2016).

The upstate of the slow oscillation is also critical for synchronizing
hippocampally generated sharp wave ripples. Sharp waves are synchronous bursts
of incredibly high-frequency (~200 Hz) activation that progress from pyramidal
neurons in the CA3 to the CA1 regions of the hippocampus during SWS (Buzsáki
1989). These events are thought to represent a wide-scale hippocampal network
search for previously experienced patterns of activation. Due to this neurological
rehearsal of previous experiences, the sharp waves are considered critical to learning
and memory trace formation (Buzsáki 1989; Girardeau and Zugaro 2011). Impor-
tantly, sharp wave ripples are temporally coupled with slow oscillations that can
recruit large networks of neurons and thus organize activation across multiple
neurological structures. In addition, the slow oscillation synchronizes the hippocam-
pal ripples with thalamocortical sleep spindles, further supporting the communica-
tion between the cortex and the hippocampus during SWS (Siapas and Wilson 1998;
Clemens et al. 2007; Mölle et al. 2009).

The interplay between hippocampal, thalamic, and cortical networks through
slow oscillatory synchronization of ripples and sleep spindles is associated with
cortical synaptic plasticity. This relationship is also thought to be a possible mech-
anism through which hippocampal-dependent short-term memories are transferred
to the more stable cortical storage of long-term memories (Gais et al. 2002; Schabus
et al. 2004, 2007; Sirota and Buzsáki 2005; Wierzynski et al. 2009; Mölle et al.
2009; Born and Wilhelm 2012). In further support of this association, experimen-
tally boosting the slow oscillation has been shown to enhance the consolidation of
newly formed memories (Marshall et al. 2006).

Another commonly used analytic feature of nREM sleep is slow-wave activity
(SWA). SWA is a measure of power in the delta frequency range (0.5–4 Hz) and is
often considered a gauge of homeostatic sleep pressure (Achermann et al. 1993;
Borbély 2001). The intensity of SWA builds over the course of the day. During the
first nREM bout of the night, SWA is greatest in the frontal regions of the brain, an
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effect that is especially observable following sleep deprivation (Werth et al. 1997;
Finelli et al. 2001). Across subsequent bouts of nREM sleep, SWA is progressively
reduced (Achermann and Borbély 1990; Achermann et al. 1993). Greater SWA
reflects greater synchrony of activity within the central nervous system (CNS) during
sleep (Greene and Frank 2010). SWA has been shown to parallel synaptic density
(Feinberg and Campbell 2010) as well as increases in synaptic potentiation (Huber
et al. 2004; Huber et al. 2006). Cellular, molecular, and neuromodulatory mecha-
nisms, as well as changes in gene expression, all favor SWS, and specifically SWA,
as a time for global synaptic downscaling (Tononi and Cirelli 2003, 2014) and
synaptic plasticity (Chauvette et al. 2012) in the brain.

In contrast to the global neuronal deactivation of nREM sleep, during REM sleep,
particular brain regions reactivate to levels similar to or exceeding those that occur
during the wake state (Braun et al. 1997; Hobson et al. 1998). For example, visual
association cortices as well as limbic and paralimbic structures (including the
hippocampal formation, parahippocampal gyri, portions of the insula, the amygdala,
and the anterior cingulate cortices) become reactivated (Maquet et al. 1996; Braun
et al. 1997; Nofzinger et al. 1997; Braun et al. 1998). Conversely, the majority of the
frontal association cortices remain inactivated from previous nREM sleep bouts
(Braun et al. 1997; Lövblad et al. 1999). Given the limbic reactivation, most
researchers support the notion that REM sleep is critical in selectively processing
emotional memories (Maquet et al. 1996; Wagner et al. 2001; Hobson and Pace-
Schott 2002; Nishida et al. 2009; Lara-Carrasco et al. 2009; Baran et al. 2012; Groch
et al. 2013) or in processing motivational or reward-driven experiences
(Nofzinger et al. 1997).

REM sleep is also characterized by muscle atonia and the titular rapid eye
movements. The muscle atonia results from descending projections of the dorsolat-
eral pontine reticular formation through the medulla and spinal cord to inhibit motor
neurons (Hishikawa and Shimizu 1995). Waves generated in the pontine reticular
formation that progress through the thalamic lateral geniculate body to the occipital
cortex (PGO waves) play a major role in the endogenous visual system excitation
characteristic of REM sleep (Callaway et al. 1987). Rhythmic activation of the
vestibulo-oculomotor neurons leads to rapid eye movements (Pompeiano 1975;
Hobson and Pace-Schott 2002), and the duration of PGO waves has been associated
with duration of these eye movement events (Nelson et al. 1983). The endogenous
activation of the extrastriate visual cortex in particular is associated with the visual
elements of dreaming, another key feature of REM sleep (Braun et al. 1998;
Hobson et al. 2000).

1.2.1.1 The Many Functions of Normal Human Sleep

As demonstrated by the dynamic brain activity during sleep, sleep also has dynamic
functions. There are many theories as to why we sleep (Siegel 2005). Sleep plays a
role in metabolic function (Morselli et al. 2011) as well as metabolite clearance from
the CNS (Xie et al. 2013). The reduction in global neuronal firing rates during nREM
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sleep has also been used to support the idea that sleep is a time for energy
conservation (Berger 1975; Walker and Berger 1980; Berger and Phillips 1995).
High levels of neuronal activation during REM sleep are not directly in line with this
theory; however, it has been suggested that bouts of REM sleep may be necessary to
maintain the CNS core temperature following reduced activation during nREM sleep
(Wehr 1992). In addition, given that activation is reduced in a number of neuro-
transmitter systems during sleep, and during REM sleep specifically (e.g., noradren-
aline, histamine, hypocretin, and serotonin), sleep may play an important role in
resensitization of these neuronal circuits (Siegel and Rogawski 1988; Tsai et al.
1993; Hipólide et al. 1998, 2005; Pedrazzoli and Benedito 2004; Siegel 2005).

Sleep, and SWS in particular, has been implicated in immune system function and
in immunological memory (Moldofsky et al. 1986; Redwine et al. 2000; Besedovsky
et al. 2011). Growth hormone is also secreted during SWS (Takahashi et al. 1968;
Honda et al. 1969; Sassin et al. 1969; Born et al. 1988; Marshall et al. 1996), which
may indicate that sleep is an important part of growth and development. Lastly, as
mentioned previously, a primary function of sleep is learning and memory
(Stickgold 2005; Diekelmann and Born 2010). Importantly, these many possible
outcomes of sleep are not mutually exclusive.

1.2.2 Sleep-Dependent Memory Consolidation in Young
Adults

1.2.2.1 Declarative Memory

Memory consolidation, or the process through which a memory trace becomes more
stable and less vulnerable to forgetting or interference, is greatest over sleep (Walker
2005; Stickgold 2005; Diekelmann et al. 2009; Diekelmann and Born 2010). Sleep-
dependent memory consolidation (SDC) involves cellular and molecular changes, as
well as changes at the systems level, to stabilize a particular memory for long-term
recall and to integrate the memory into other existing memories.

In one of the earliest studies of memory consolidation over sleep, Jenkins and
Dallenbach (1924) found that memory for nonsense syllables was greater following
bouts of sleep than following bouts of wake. Since then, the role of sleep on
declarative memory has been more thoroughly investigated, and many studies
have replicated the improved recall following sleep (Gais and Born 2004a). For
example, when individuals were taught a list of semantically unrelated word-pairs
either in the morning or in the evening, recall accuracy was significantly greater 12 h
later when the intervening interval contained sleep (e.g., Donohue and Spencer
2011; Wilson et al. 2012). These results suggest that during sleep, memories are
actively consolidated, leading to a reduction in forgetting and more long-term
retention of the encoded information (Ellenbogen et al. 2006).

Particular sleep stages appear to play different roles in memory consolidation in
adults (Spencer 2013). For example, SDC of declarative memory is often associated
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with time spent in SWS (Gais and Born 2004a, b). Specifically, replay of activation
patterns in the hippocampus (Pavlides and Winson 1989) during SWS may be
critical to the consolidation of declarative memories (Wilson and McNaughton
1994). Hippocampal replay during early bouts of SWS is observed directly follow-
ing new learning in rats (Wilson and McNaughton 1994; Skaggs and McNaughton
1996; Louie and Wilson 2001; Ji and Wilson 2007). Similarly, a study by Peigneux
et al. (2004) showed that neurological activation within the hippocampus during
learning of a new declarative task in young adults was mirrored in a subsequent bout
of SWS. Importantly, the reactivation of the hippocampus during SWS was specif-
ically associated with improved performance on this declarative memory task upon
waking. Reduced acetylcholine levels in the hippocampus during SWS appear to
allow for hippocampal replay, and is necessary for declarative memory consolida-
tion, but not for non-declarative memory consolidation (Gais and Born 2004b).

Targeted experimental reactivation of hippocampal neuronal networks has also
been shown to improve declarative memory. During encoding, declarative items
were paired with either olfactory (Rasch et al. 2007; Barnes and Wilson 2014) or
auditory (Rudoy et al. 2009; Cairney et al. 2014a) stimuli. During subsequent SWS,
a subset of the sensory stimuli was presented to the participant. Memory retention for
the reactivated items was significantly improved compared to the items that were not
cued during sleep.

REM sleep may also play a role in the consolidation of declarative information.
Whereas SWS is necessary for initial phases of consolidation, neocortical activation
of the hippocampus during REM sleep may reflect a later stage of memory consol-
idation (Datta 2000; Louie and Wilson 2001; Jones and Wilson 2005). REM sleep
has been suggested to be involved in reorganization, integration, and optimization of
previously learned material (Laureys et al. 2001; Peigneux et al. 2003; Walker and
Stickgold 2010), as well as the integration of unassociated information into currently
existing networks, thus enhancing creative problem-solving (Cai et al. 2009). REM
sleep may also potentially be a time in which older memory traces are intentionally
weakened (Poe et al. 2000), thereby making memory recall more efficient.

1.2.2.2 Procedural Memory

Procedural memories have also been shown to be enhanced over sleep in young
adults (Plihal and Born 1997; Fischer et al. 2002; Walker et al. 2005; Wilson et al.
2012). REM sleep has been proposed to play a role in the consolidation of procedural
memories (Karni et al. 1994; Plihal and Born 1997; Maquet et al. 2000; Laureys et al.
2001; Smith et al. 2004), although this has been debated (Siegel 2001; Rasch et al.
2009; Laventure et al. 2016). Alternatively, nREM2 sleep and sleep spindles during
nREM2 have also been associated with procedural memory consolidation (Smith
and MacNeill 1994; Walker et al. 2002; Fogel and Smith 2006; Nishida and Walker
2007; Fogel et al. 2007b; Laventure et al. 2016). It is possible that both nREM and
REM sleep contribute to procedural learning, but in different capacities (Stickgold
et al. 2000; Smith et al. 2004; Fogel et al. 2015).
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In conjunction with the sleep stage discrepancies, the functional role of sleep in
procedural memory consolidation is also still controversial (Song et al. 2007;
Rickard et al. 2008; Cai and Rickard 2009; Albouy et al. 2013). Recent studies
have questioned the magnitude of the effect of sleep on procedural memory (Pereira
et al. 2015), as well as whether additional features, such as explicit awareness during
procedural learning (Robertson et al. 2004), modify the influence of sleep. Further,
the time course of sleep with respect to learning (Brawn et al. 2010) may also factor
into the possible benefits of sleep on procedural memory consolidation.

1.2.2.3 Emotional Memory

Emotional memory consolidation has also been shown to benefit from sleep (Wag-
ner et al. 2001; Hu et al. 2006; Holland and Lewis 2007; Sterpenich et al. 2007;
Payne et al. 2008; Payne and Kensinger 2010; Lewis et al. 2011; Baran et al. 2012;
Deliens et al. 2014). Sleep prioritizes the consolidation of emotional elements of
stimuli above more neutral information in the background (Payne et al. 2008). In
addition, Baran and colleagues demonstrated that the emotional reactivity to stimuli
is protected over sleep (2012). When memory for emotional stimuli was probed after
a delay, the strength of neuronal activation and the functional connectivity between
cortical networks (especially the medial prefrontal cortex (mPFC)) and the hippo-
campus were stronger for emotional compared to neutral stimuli (Sterpenich et al.
2007). This relationship was especially observed when sleep followed encoding
compared to wake. The mPFC is thought to provide top-down inhibitory control
over the amygdala, thus maintaining control of the emotional response (Ochsner and
Gross 2005). Sleep has been shown to depotentiate amygdala reactivity to emotional
stimuli (van der Helm et al. 2011), whereas sleep deprivation has been shown to
reduce the functional connectivity between the mPFC and the amygdala (Yoo et al.
2007). The result of sleep deprivation is thus an inappropriate hyperarousal of the
limbic system to emotional stimuli. Sleep-related changes in emotional memory
recall, as well as the underlying neurological changes in connectivity, were also
shown to be incredibly long-lasting (Wagner et al. 2006; Sterpenich et al. 2009).

A number of studies have supported the role of REM sleep in both emotional
processing (Lara-Carrasco et al. 2009; Baran et al. 2012) and emotional memory
consolidation (Wagner et al. 2001; Nishida et al. 2009; Groch et al. 2013). During
REM sleep, the amygdala, hippocampus, and cortical areas show a distribution of
activation which may support a REM sleep benefit on emotion processing (Maquet
et al. 1996). Similarly, theta coherence between the amygdala, the mPFC, and the
hippocampus during REM sleep was selectively correlated to changes in fear
memory in rats (Popa et al. 2010). However, not all research supports a functional
role of REM sleep in emotional SDC. For example, in one study, REM sleep
deprivation was demonstrated to have no impact on SDC of emotional memories
(Morgenthaler et al. 2014).

Recent work has also attributed emotional SDC to SWS. Groch and colleagues
suggest that phasic noradrenergic activity in early bouts of SWS supports the
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consolidation of memories that require both hippocampal and amygdala activation
(2011). Hippocampal-based fear contextual memory was stabilized during SWS in
mice due to CA1 network stabilization (Ognjanovski et al. 2014). In humans, targeted
memory reactivation using auditory cues during SWSwas shown to enhance memory
recall for emotional memories (Cairney et al. 2014a). In another study, overnight
SWA was pharmacologically enhanced following the encoding of an emotional text.
Significant memory improvements were observed in the group with increased SWA
compared to the control group (Benedict et al. 2009). Similarly to procedural memory
consolidation, new research is supporting a role for multiple sleep stages in the
progression of emotional memory consolidation (Cairney et al. 2014b).

Likewise, the cycling between nREM and REM sleep stages may reflect a
sequential pattern of consolidation. In rodent studies, nREM sleep is important for
early stages of memory consolidation, whereas REM is needed for later stages of
consolidation (Giuditta et al. 1995; Louie and Wilson 2001; Ambrosini and Giuditta
2001). A recent study using transgenic mouse models has shown that REM sleep
may enhance SWA in the subsequent nREM bout, thereby subsequently enhancing
synaptic plasticity indirectly (Kashiwagi and Hayashi 2016). In human research, the
sequential relationship between nREM and REM sleep has also been implicated in
memory consolidation (Ficca et al. 2000b; Griessenberger et al. 2012; Grosmark
et al. 2012; Spencer 2013; Sonni and Spencer 2015).

1.2.3 Summary

A number of studies have supported sleep as a time in which memory consolidation
occurs in young adults. Specifically, nREM sleep, and accompanying elements such
as slow oscillations, SWA, and sleep spindles, is associated with synaptic plasticity
and with the transfer of information from hippocampal to neocortical networks.
Importantly, new work is investigating the relationship between nREM and REM
sleep with respect to memory processing. Sleep has been shown to improve memory
in declarative, procedural, and emotional realms, although the procedural memory
literature is inconsistent. Therefore, young adult SDC will be a foundation from
which to compare other developmental life stages.

1.3 Prenatal Development and Infancy

1.3.1 Fetal and Infant Sleep

Sleep first develops between 26 and 28 weeks gestational age (Graven and Browne
2008). Early in development, adult-like sleep stages cannot be distinguished. At
approximately 30 weeks gestational age, sleep is first differentiated into quiet and
active sleep (de Weerd and van den Bossche 2003). Quiet sleep is identifiable by
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delta waves and tracé alternant patterns of brain activity. Tracé alternant are bursts
of slow waves intermixed with sharp waves, with alternating periods of quiescence.
As such, quiet sleep is considered an immature form of adult nREM sleep. Alterna-
tively, active sleep is identifiable by variability in respiration and heart rate with both
slow and rapid eye movements; active sleep is therefore considered to be an
immature form of adult REM sleep (Prechtl 1974). Rapid eye movements are first
observable at 30 weeks gestational age, and increase through approximately
40 weeks, after which the rate of eye movements declines (Bots et al. 1981; Birnholz
1981; Inoue et al. 1986; Okai et al. 1992). Data from prematurely born infants has
supported this pattern of eye movements increasing between 30 and 41 weeks
postconceptional age (Dreyfus-Brisac 1970; Petre-Quadens and De Lee 1974). By
47 weeks gestational age, sleep stages can be differentiated into the standard adult
stages as the tracé alternant are replaced with increasing slow waves (Sterman et al.
1977; Dan and Boyd 2006).

In neonates, sleep accounts for approximately 16–18 h of the day. Neonatal sleep
is quite fragmented, alternating rapidly between the active and quiet sleep stages, and
with more frequent transitions from sleep to wake (Anders and Roffwarg 1973;
Peirano and Algarín 2007). As the forebrain develops, greater control is gained over
sleep and waking states (Mirmiran et al. 2003); at 2 weeks of age, neonates are only
capable of remaining asleep for 4 h at a time. By the end of the 1st year of life, an
infant can remain sleeping without awakening for 7 h (Anders and Keener 1985).
Sleep also begins to be consolidated to nocturnal bouts with a reduction in diurnal
sleep, and by the end of the 1st year, total sleep time in infants is reduced to about
14 h (Iglowstein et al. 2003).

Characteristic features of the sleep EEG also begin to emerge in the 1st year of
life. Sleep spindles are first identifiable around 8 weeks post-gestational age (Metcalf
1969, 1970; Tanguay et al. 1975; Jenni et al. 2004). In the first 6 months of life,
spindle density (number of spindles per minute nREM sleep) rapidly increases,
spindle amplitude increases, and spindle duration decreases (Tanguay et al. 1975).
These changes in spindle architecture are thought to reflect the maturation of the
physiological system that produces spindles, including thalamocortical networks, as
well as the growth of dendrites and the myelination of neurons.

In concordance with the progressive maturation of the brain, prominent changes
in active/REM sleep occur. In newborns, active sleep is entered directly from
wakefulness; after the first few months, however, quiet sleep predominates early in
the sleep bout, whereas active sleep becomes more prominent later in the sleep bout.
This distribution is more in line with adult sleep patterns. The proportion of REM or
active sleep across the night also changes, comprising 50% of the night in newborns
(Anders and Keener 1985) and decreasing throughout the life span (Ficca et al.
2000a).

The extremely large proportion of REM sleep in early development is thought to
play a role in brain maturation. Roffwarg et al. proposed that REM sleep was
necessary for CNS development (1966). They suggested that since exogenous
activation of the nervous system is limited in utero due to the fetus spending limited
time in an awake state, REM sleep was necessary to supply sufficient endogenous
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neuronal activation to encourage development. Many studies have supported this
hypothesis (Mirmiran et al. 1983a, 2003; Van Someren et al. 1990). For example,
pharmacologically or instrumentally suppressing REM sleep for the first few weeks
of life resulted in significantly reduced regional brain weights of the cerebral cortex
and the medulla oblongata in rat pups (Mirmiran et al. 1983a). However, with further
research, the ontogenetic hypothesis has been modified to demonstrate that REM
sleep does more than simply mimic the wake state. Suppression of REM sleep in
kittens significantly enhanced brain deterioration from monocular deprivation,
despite the fact that REM sleep was replaced primarily by active wake (Marks
et al. 1995). Further, more recent work has suggested that early REM/active sleep
specifically reduces apoptosis during brain maturation (Morrissey et al. 2004). Thus,
as the progression of CNS development is reduced with age (Dobbing and Sands
1973), so is the need for REM sleep.

Parallel to the decrease in REM sleep is an increase in SWA across early
development. The intensification of SWA has been suggested to reflect the increase
in synaptogenesis and synaptic connectivity associated with brain maturation (Frank
et al. 2001; Fattinger et al. 2014; Huber and Born 2014). In addition, SWA has been
associated with learning and memory consolidation throughout the life span given its
relationship to synaptic plasticity (Huber et al. 2004). Important to note is that theta
activity (6.5–9 Hz), and not SWA (as in adults; Tononi and Cirelli 2006), appears to
indicate sleep pressure in infants (Jenni et al. 2004). In a longitudinal study of
nocturnal EEG in human infants, Jenni and colleagues demonstrated that theta
activity declined over successive quiet sleep/nREM bouts. At 9 months of age,
this decline approached an exponential function, reflecting a dissipation of sleep
tendency over consecutive bouts.

Overall, the prominent changes in sleep throughout infancy seem to reflect the
drastic maturation of the CNS. Developmental changes in SWA, sleep spindles, and
REM sleep are associated with neuronal plasticity, synaptic efficiency, and synaptic
proliferation. Given these relationships, it seems likely that sleep would play a
pronounced role in SDC in infants.

1.3.2 Sleep-Dependent Memory Consolidation in Infants

As sleep changes so dramatically across infancy, it is difficult to associate any
particular component of sleep with specific behavioral changes. In addition, research
paradigms for infant memory are often limited by the fact that this population lacks
strong verbal communication skills. However, learning and cognition have been
associated with sleep in infancy. For example, neonates have been shown to learn
during sleep. Adaptation to a conditioned response can be achieved while the
newborn is sleeping (Fifer et al. 2010; Reeb-Sutherland et al. 2011). This response
may be sleep stage dependent, as work in rats showed that classical conditioning
during sleep was only achieved during REM, and not nREM sleep (Mirmiran et al.
1983b). Although in line with the ontogenetic hypothesis of REM sleep, these results

10 L. B. F. Kurdziel



may suggest an additional benefit to the high prevalence of REM in early develop-
ment given the adaptive benefit of learning during sleep.

Infant sleep habits have also been associated with learning and memory that
occurs during wakefulness. Habitual nap duration and nocturnal sleep efficiency as
determined by parental questionnaires were associated with improved generalization
on an imitation task (Lukowski and Milojevich 2013). Similarly, nighttime sleep
quality variables, such as sleep efficiency, were positively correlated with memory
encoding in 6-month-old children (Konrad et al. 2016a). In this study, sleep quality
measures obtained from 24-h actigraphy recordings were associated with perfor-
mance on an immediate imitation task. This relationship was not observed in
12-month-old children, however.

1.3.2.1 Declarative Memory

Very few studies have assessed the role of infant sleep on declarative memory
consolidation. These studies have also only focused on napping, rather than noctur-
nal sleep in infants. A benefit of sleep on declarative memory in infants was first
demonstrated in a study by Seehagen and colleagues (2015). Following observation
of novel behavioral actions with a puppet by experimenters, 6- and 12-month-old
infants either napped (nap group) or napped less than 30 min (no-nap group) during a
4-h delay. Following this delay, only infants in the nap group showed significant
imitation of the novel actions. Further, following a 24-h delay, the nap condition
showed significantly more memory for the actions than the no-nap group.

The Seehagen study is somewhat contradictory to earlier studies on artificial
language learning infants. In 15-month-old infants, veridical memory for word
strings of an artificial language was not better following a nap, and in fact wake
seemed to benefit recall after a 4-h delay. However, napping infants showed a greater
abstraction of grammar rules with sleep (Gómez et al. 2006), and this effect was
long-lasting, whereas the wake benefit of veridical word recall was not (Hupbach
et al. 2009). These studies are difficult to interpret with respect to the role of sleep in
declarative memory consolidation in infants. The wake benefit on initial veridical
recall, although not a lasting effect, would suggest that sleep does not benefit
declarative memory performance. However, the sleep benefit for rule abstraction is
important in language learning contexts in particular.

Recent work has further investigated the role of infant sleep on abstraction and
generalization. Infants between the ages of 9 and 16 months encoded objects with
both specific and general categorical word meanings (Friedrich et al. 2015). Results
suggest that napping maintains memory for specific, veridical word meanings while
additionally abstracting categorical information. Further, the observed semantic
generalization was associated with sleep spindles during the nap. In two studies of
deferred imitation, napping in 12-month-old infants was also associated with both
veridical recall and generalization of the demonstrated hand puppet actions to novel
puppets (Konrad et al. 2016b, c).
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1.3.2.2 Procedural Memory

Only one study has investigated the role of sleep on procedural-type memory
consolidation in infancy. Three-month-old infants were trained to activate a mobile
over their crib with foot kicking behavior. Two weeks later, after induced forgetting
had occurred, this memory was reactivated. Duration of sleep following this
reactivation was positively associated with recall of the behavior (Fagen and
Rovee-Collier 1983). This suggests that memory for procedural information is
benefited by sleep in infancy, although the evidence is minimal and warrants
additional examination.

1.3.2.3 Emotional Memory

To date, there have been no studies assessing emotional memory consolidation
across sleep in infants.

1.3.3 Summary

In sum, the research on SDC in infancy is limited and somewhat contrary. Additional
research is needed to replicate current findings and to help better understand the
cognitive functions of sleep during this time. Specifically, more research is needed to
better understand how physiological differences in sleep are related to changes in the
memory consolidation process. To date, no research has examined nocturnal sleep in
infants nor emotional memory consolidation in infants. Given the higher proportion
of REM sleep during infancy, research on memory consolidation across both the
emotional and procedural domains is especially warranted.

1.4 Early Childhood

1.4.1 Early Childhood Sleep

Sleep continues to evolve throughout childhood. Total sleep time declines steadily.
At 2 years of age, most children sleep between 10 and 15 h across a 24-h period. By
12 years of age, total sleep time drops to between 8 and 10 h (Iglowstein et al. 2003).
One of the most obvious sleep-related changes during early childhood is the
diminishment of napping. On average, children shift from two midday naps to
only one midday nap at about 18 months. Children will transition to a monophasic
sleep pattern (only sleeping at night) during the preschool age range (~3 to 5 years;
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Weissbluth 1995; Jenni and Carskadon 2007). The likelihood of napping decreases
from 50% in 3-year-olds to only about 1% in 7-year-olds (Iglowstein et al. 2003).

It is probable that the reduction in diurnal sleep across development reflects brain
maturation (Lam et al. 2011). During early childhood, synaptic thresholds may be
reached faster than adults due to less efficient and more synaptically dense neuronal
networks (Huttenlocher 1979; Feinberg et al. 1985; Huttenlocher and Dabholkar
1997). As such, children need a period of global downscaling during the day. Almost
50% of the total naptime for a preschool-aged child is dedicated to SWS (Kurdziel
et al. 2013), further supporting that the nap is a time for synaptic downscaling.
However, as cortical networks develop, the need for the nap decreases until sleep is
consolidated to one nocturnal bout.

In line with the changes in sleep pattern are additional changes in sleep physiol-
ogy. REM sleep continues to decline, reaching the adult proportions (~20% of the
night) by approximately 10 years of age (McCarley 2007). Interestingly, REM sleep
is relatively lacking during daytime naps in preschool-aged children (Kurdziel et al.
2013). SWA also continues to increase throughout development (Ohayon et al.
2004; McCarley 2007; Kurth et al. 2010). The maturation of delta waves has been
shown to mimic the progression of synaptic density and metabolic activity specif-
ically in the frontal cortex (Feinberg et al. 1990). In addition, maturation of specific
regions of the cortex has been associated with increases in localized SWA, as well as
development of regional-specific cognitive abilities (Kurth et al. 2012). This work
further supports that SWA may be used as a measure of cortical maturation
(Feinberg et al. 1990; McCarley 2007; Kurth et al. 2012).

An increase in nREM2 sleep is also observed, and sleep spindles continue to
mature, throughout childhood. Spindles decrease throughout the 2nd year of life but
return to average adult frequency levels within the preschool years (Tanguay et al.
1975). Sleep spindles in early childhood may reflect plasticity and new learning, as
in adults (Kurdziel et al. 2013). However, it is also possible that spindle measures
reflect more trait-like differences between individuals. For example, in school-aged
children, sigma power was positively associated with IQ (Geiger et al. 2011), and
spindle density was associated with narrative memory differences in a standardized
assessment (Chatburn et al. 2013).

1.4.2 Sleep-Dependent Memory Consolidation in Children

1.4.2.1 Declarative Memory

Like infancy, early childhood is a tentatively explored age range with respect to
SDC. Only recently has early childhood been a targeted population for sleep
research. Within the declarative domain, the literature supports SDC in children.
Some of the first childhood-specific examples of SDC in declarative tasks demon-
strate that both 6–8-year-old and 9–12-year-old children recall significantly more
word-pairs following a period of nocturnal sleep than following a period of wake
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(Backhaus et al. 2008; Wilhelm et al. 2008). Children have also been demonstrated
to gain a benefit of nocturnal sleep (Wilhelm et al. 2008; Henderson et al. 2012) or
diurnal sleep (napping; Kurdziel et al. 2013) on a declarative 2D object-location
task. Specifically, improved declarative memory was associated with sleep spindles
in the nap, and this nap benefit remained even following subsequent overnight sleep
(Kurdziel et al. 2013).

There have been a number of studies examining the role of sleep in vocabulary
learning – an important goal of early childhood education (Axelsson et al. 2016).
Williams and Horst (2014) showed that when a nap directly followed learning of
new vocabulary words through a storybook, there were significant and sustained
improvements in word identification in 3-year-old children. The function of sleep in
vocabulary learning has also been examined in a slightly older (7–12 years of age)
developmental population (Henderson et al. 2012). Across all measures, sleep was
shown to improve retention of new words and led to the incorporation of these words
into the children’s lexicon.

1.4.2.2 Procedural Memory

Similarly to adults, SDC in the procedural domain during childhood is inconsistent.
Children between the ages of 6 and 13 showed no benefit of nocturnal sleep on a
serial reaction time task (SRTT; Fischer et al. 2007; Henderson et al. 2012), a task of
procedural skill that has been shown to elicit a sleep benefit adults (Walker et al.
2002; Fischer et al. 2002; Korman et al. 2007; Schönauer et al. 2013). One study
even showed a wake benefit on the SRTT in children (Wilhelm et al. 2008).

It has been suggested that sleep in children prioritizes consolidation of explicit or
more hippocampal-based tasks. This theory has been supported by recent research
within the procedural realm. In one experiment, 4–6-year-old children were given
extensive training on a sequencing task across 3 days, prior to being assessed for
performance improvements across a nap. With this additional training, children were
able to show nap-dependent improvements in motor performance (Wilhelm et al.
2012). It was posited that the prioritized explicit knowledge was consolidated across
the intervening periods of nocturnal sleep between training sessions, thus allowing
for the consolidation of implicit information across the latter nap. Similarly,
nap-dependent performance improvements on a modified SRTT task were observed
in preschool-aged children, but only following additional overnight sleep
(Desrochers et al. 2016). In this study, explicit recall of the implicitly learned
motor sequence was also significantly greater when a nap followed encoding
compared to equivalent wake. Sleep-dependent prioritization for explicit procedural
information has also been demonstrated in adults (Robertson et al. 2004). However,
when both children and adults were taught a task implicitly, children demonstrated
greater explicit knowledge of the task than adults (Wilhelm et al. 2013).

Additionally, work in children with attention deficit hyperactivity disorder
(ADHD) supports the preferential consolidation of explicit features of procedural
tasks over sleep. Children with ADHD have hypoactivation of the prefrontal cortex,

14 L. B. F. Kurdziel



leading to impairment of explicit declarative memory consolidation (Prehn-
Kristensen et al. 2011a). Compared to healthy controls, children (9–12 years of
age) showed SDC of an implicit procedural sequential button-pressing task. It was
suggested that due to reduced explicit consolidation in this population, children with
ADHD have reduced implicit-explicit competition during overnight sleep and are
therefore able to demonstrate implicit SDC (Prehn-Kristensen et al. 2011b).

The hypothesis that children prioritize explicit, hippocampal-dependent features
of new information for consolidation is supported by their sleep architecture.
Children have significantly greater amounts of SWS (Ohayon et al. 2004) and
have greater spectral power in SWA compared to adults (Kurth et al. 2010). SWS
and SWA have been associated with hippocampal activation (Moroni et al. 2007;
Dang-Vu et al. 2008) as well as consolidation of hippocampal-dependent tasks in
adults (e.g., Peigneux et al. 2004). Children’s ability to extract the explicit informa-
tion from a procedural sequencing task over sleep was significantly correlated with
SWS, and SWA (Wilhelm et al. 2013), especially within the range of slow oscilla-
tions (<1 Hz). Additionally, explicit extraction in children was shown to be associ-
ated left hippocampal activation (Wilhelm et al. 2013). Lastly, children with ADHD
demonstrated SDC of an implicit procedural task (Prehn-Kristensen et al. 2011b);
however, while slow oscillations were associated with declarative memory SDC in
healthy controls, this association was not observed in the ADHD population (Prehn-
Kristensen et al. 2011a). Thus, the large proportion of sleep dedicated to SWS in
children, including during diurnal sleep bouts, may be associated with increased
hippocampal-dependent learning.

1.4.2.3 Emotional Memory

In children, SDC has also been examined with respect to emotional memories.
Healthy children between the ages of 9 and 12 remember significantly more images
overall following sleep than following wake; further, they were shown to preferen-
tially consolidate emotionally valenced images compared to neutral images (Prehn-
Kristensen et al. 2013). Consolidation of emotional images in children was associ-
ated with nREM sleep, the spectral power of the slow oscillation, and theta oscilla-
tions during REM sleep (Prehn-Kristensen et al. 2013). Therefore, emotional
memory consolidation in children appears to require an interplay between nREM
and REM sleep, similarly to adults. More research is needed to better understand the
relationship between sleep physiology and emotional memory consolidation in
children.

1.4.3 Summary

Overall, work in early childhood supports a relationship between sleep and memory
consolidation. Primarily, the high proportion of SWS, and the increased SWA across
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nREM sleep bouts, fosters the consolidation of explicit information and of
hippocampal-based memories. This was shown to be consistent across all memory
domains. Important to note, however, is that the designation of “childhood” encom-
passes a huge range of neurological development and accompanying changes in
learning capacity. Therefore while the current research supports SDC across child-
hood, there are many ages and developmental stages within this population that have
not been investigated.

1.5 Adolescence

1.5.1 Adolescent Sleep

Following the onset of puberty, a number of physiological and neurological changes
occur. Sleep is not spared from these pubertal alterations. Total sleep time declines
from the prepubertal ~10 h to the more adult-like 8 h by 16 years of age (Iglowstein
et al. 2003). The timing of sleep also changes. As children progress through pubertal
stages, their chronotypes shift to more evening-type “night owls” as opposed to the
morning-type “early birds.” Adolescents tend to fall asleep and wake up later due to
a later plasma melatonin offset with age and pubertal stage (Carskadon 1990).

The physiology of sleep changes with adolescence as well. REM sleep duration
increases only slightly across adolescence, but still significantly (Feinberg et al.
2012). In addition, theta power in both REM and nREM sleep stages declines
(Feinberg and Campbell 2013). The most prominent change in sleep architecture
is the reduction of SWS. There is a 40% decline in SWS from prepubertal to mature
stages of development, with a corresponding increase in nREM2 (~20%; Jenni and
Carskadon 2004). Accompanying this is a decline in SWA (Gaudreau et al. 2001;
Jenni and Carskadon 2004; Feinberg and Campbell 2010, 2013). Importantly,
however, despite a global reduction in SWA in more mature adolescents, the typical
decline of SWA over the course of the night is still observed; therefore, despite
reduced spectral power, SWA in the adolescent is functioning to reduce sleep
pressure similarly to children and adults (Jenni and Carskadon 2004; Campbell
et al. 2011).

The reduction in SWA across adolescence, compared to the marked increase
from infancy through childhood, is thought to reflect changes in synaptic connec-
tivity. Postnatal development of neuronal connections leads to increases in SWA
(Feinberg and Campbell 2013); however, starting in early adolescence, dramatic
pruning of synapses occurs, such that synaptic density at 20 years of age is half
what it was at 10 years (Huttenlocher 1979). Therefore it follows that SWA would
decline in parallel.
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1.5.2 Adolescent Sleep-Dependent Memory Consolidation

Given the vast restructuring of the CNS throughout adolescence, and the relationship
between sleep and synaptic pruning, adolescence is an interesting population in
which to study SDC. However, very few studies have addressed the relationship
between sleep and memory in this age group. Difficulties with studying the role of
SDC in adolescence include the variation in pubertal onset for genders (Sisk and
Foster 2004), as well as the need to consider the effects of hormonal fluctuations on
memory and attention (Sherwin 2012). Nevertheless, SDC in adolescence has begun
to receive greater attention in the literature.

1.5.2.1 Declarative Memory

The majority of SDC research in adolescence examines declarative memory consol-
idation. For example, 17-year-old German high school students displayed signifi-
cantly enhanced memory for English translations of German words when sleep
directly followed learning compared to a 12-h period of wake (Gais et al. 2006).
Similarly, using the paired-associates test of declarative memory, Potkin and Bunney
(2012) demonstrated a sleep benefit for adolescents between 10 and 14 years of age.
Naps in schools were shown to significantly improve retention of declarative
information taught in a classroom setting, whereas significant decay was observed
without daytime napping (Lemos et al. 2014).

However, not all studies demonstrate a benefit of sleep on declarative memories
in adolescence. Holz et al. (2012) showed that performance on a word-pair test was
actually better the following morning when a long delay (7.5 h) of wake followed
encoding, compared to when encoding occurred directly prior to sleep. Importantly,
this effect was not maintained 1 week later. In a different study, no significant sleep
benefit was found across a ~50 min nap compared to either a period of activity or
passive rest in 16-year-old females; however, performance on the word-pair learning
task was significantly correlated with sigma power, suggesting some level of active
consolidation over sleep (Piosczyk et al. 2013).

The discrepancies in declarative SDC across adolescence are likely related to the
changes in SWS and in the vast restructuring of the brain. Hypoactivation of the
prefrontal cortex in ADHD has been shown to reduce declarative SDC in 10–16-
year-olds. This reduction in SDC was associated with a dysfunctional slow oscilla-
tion in individuals with ADHD. Experimentally increasing the slow oscillation
during early SWS through transcranial oscillating direct current stimulation leads
to observed improvements in declarative memory consolidation in 10–14-year-olds
(Prehn-Kristensen et al. 2014).
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1.5.2.2 Procedural Memory

Very few studies have examined SDC of procedural memory in adolescence. In one
study, individuals (10–13 years) were taught the procedural task of mirror tracing
either in the morning (wake group) or the evening (sleep group). Speed and accuracy
at the retrieval period 12 h later were significantly better than during encoding;
however, there were no differences between the sleep and wake groups (Prehn-
Kristensen et al. 2009). Importantly, the age group tested were early adolescents,
encompassing a predominantly prepubertal age range. In a separate study, older
adolescents (16–17 years) exhibited significant improvements on a procedural finger
tapping task when trained directly prior to sleep, as opposed to 7.5 h prior to sleep.
This benefit was long-lasting, remaining for at least 7 days after initial learning (Holz
et al. 2012). Therefore, it is possible that SDC of procedural memory in adolescence
is dependent on structural neuronal changes that occur throughout puberty.

1.5.2.3 Emotional Memory

Emotional declarative memories have also been examined, albeit rarely, with respect
to SDC in adolescence. Following sleep, 10–13-year-olds were better at recognizing
pictures from the International Affective Picture System (IAPS; Lang et al. 2008)
than following an equivalent period spent awake (Prehn-Kristensen et al. 2009;
Prehn-Kristensen et al. 2011a). Memory was greater for emotional (negative) com-
pared to neutral pictures, and performance across sleep was significantly associated
with slow oscillation power during nREM sleep (Prehn-Kristensen et al. 2011a).
Again, it is important to note that the individuals in these studies were in early
adolescence.

1.5.2.4 Sleep-Dependent Memory Consolidation Following Sleep
Restriction

Given the later sleep onset in adolescence, but the requirement for early rise times for
school attendance, many adolescents are experiencing sleep deprivation over the
course of the week (Carskadon 2011). As such, there have been a number of studies
examining the role of restricted sleep on memory consolidation in adolescence. For
example, Kopasz and colleagues (2010) had 14- to 16-year-olds learn a paired-
associate task after which they were sleep restricted (4-h night sleep opportunity) or
not (9-h sleep opportunity) at night. After a recovery night, memory performance
was assessed. No significant group differences were observed in memory recall
performance. This result is possibly due to the lack of a difference in time spent in
SWS between the experimental conditions. However, in the sleep deprivation group,
performance was significantly correlated with the percentage of nREM sleep across
the recovery night, whereas performance did not correlate with any measure of sleep
architecture for the control group.
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In a similar experiment, adolescents that experienced 4 days of sleep restriction
did not significantly differ from controls on either a declarative (word-pair) or a
procedural (mirror tracing) memory task. Interestingly, time spent in SWS remained
constant across sleep restriction conditions, whereas REM sleep declined with
restriction. The percentage of time spent in SWS therefore increased with decreased
sleep time. This suggests that, during adolescence, SWS is conserved despite sleep
restriction (Voderholzer et al. 2011).

1.5.3 Summary

Overall, there is clear evidence of SDC in adolescence. However, SDC of procedural
and declarative information is inconsistent and may depend on pubertal status.
Across the developmental trajectory into adulthood, there seems to be a clear bias
of SDC toward declarative information. This may be due to the rapidly increasing
power of SWA or to the large percentage of time spent in SWS. Intriguingly, even
across multiple nights of sleep deprivation, adolescents were shown to conserve
SWS time at the expense of other sleep stages (REM in particular).

Following puberty, however, there are drastic reductions in synaptic density and a
resultant parallel reduction in SWA. It is at this point in development where
procedural SDC gains more equal footing with declarative SDC. Thus, puberty
may be the transition point in which prioritization of hippocampus-dependent,
explicit information is diminished. However, further research is needed to examine
the interplay between these memory systems across development and the associated
role of sleep in these domains.

1.6 Middle-Aged and Older Adulthood

1.6.1 Middle-Aged and Older Adult Sleep

As adults age, they tend to go to bed earlier and wake up earlier, showing a shift
toward morning chronotypes. Sleep quality also declines with age (Carrier et al.
1997). Total sleep time decreases, sleep efficiency is reduced, and sleep becomes
more fragmented. These changes in sleep time are associated with reductions in
health (Newman et al. 1997). In older adults both too short and too long of sleep
durations were associated with increased mortality risk (Dew et al. 2003; Gangwisch
et al. 2008), whereas the same was not true for middle-aged adults (Gangwisch et al.
2008). Age-related changes in sleep time have also been associated with diabetes
mellitus and impaired glucose tolerance (Gottlieb et al. 2005; Yaggi et al. 2006),
hypertension (Gangwisch et al. 2006; Gottlieb et al. 2006), and coronary heart
disease (Ayas et al. 2003). Interestingly, older adults appear to have a higher
tolerance for sleep deprivation than younger adults (Buysse et al. 1993; Stenuit
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and Kerkhofs 2005; Bliese et al. 2006; Duffy et al. 2009). It has been suggested that
these age-related changes in sleep time might be due to the reduced cell numbers in
the ventrolateral preoptic nucleus (VLPO) of the hypothalamus in older adults
(Hofman and Swaab 1989; Gaus et al. 2002; Duffy et al. 2009). The VLPO inhibits
monoaminergic arousal systems thereby allowing for the transition to sleep from
wakefulness (Gaus et al. 2002; Fuller et al. 2006).

Sleep architecture also changes with age. The most dramatic change in sleep
architecture is the decline in SWS (Hirshkowitz et al. 1992; Bliwise 1993; Carrier
et al. 1997; Ohayon et al. 2004; Cooke and Ancoli-Israel 2011). In a study of adult
men, SWS decreased from 18.9% in young adulthood to 3.4% in middle-aged
adulthood (up to 50 years of age; Van Cauter et al. 2000). The reduction in SWS
time and the fragmentation of SWS in the elderly have been shown to correlate with
levels of amyloid beta in the cerebral spinal fluid (Varga et al. 2016b). This supports
that SWS functions to clear neuronal metabolites and implicates sleep changes in
age-related health risks.

The percentage of the night spent in REM sleep declines with age, although this
decline parallels the reduction in sleep time. SWS and REM sleep reductions are
compensated by increases in nREM1 sleep and awakenings, whereas nREM2 stays
fairly consistent throughout aging (Hirshkowitz et al. 1992; Bliwise 1993; Carrier
et al. 1997; Van Cauter et al. 2000; Ohayon et al. 2004; Cooke and Ancoli-Israel
2011; Spencer 2013). As sleep quality declines, there is a corresponding increase in
daytime sleepiness with age (Ancoli-Israel 1997). This suggests that age does not
diminish sleep need (Duffy et al. 2009). The age-related decline of sleep is thought
to be related to disruption of circadian rhythms or to medical causes such as sleep
disorders or prescribed medications (Ancoli-Israel 1997; Cooke and Ancoli-Israel
2011).

SWA has also been shown to continue to decrease throughout middle-aged and
older adulthood (Landolt et al. 1996; Carrier et al. 2001; Gaudreau et al. 2001). The
reduction in SWS and SWA is attributed to progressive atrophy of the mPFC
(Mander et al. 2013; Varga et al. 2016a), as well as to reductions in growth hormone
with age (Van Cauter et al. 2000). In addition, the progressive decline in SWA across
the night is reduced in middle-aged adulthood, suggesting a reduction of homeostatic
sleep pressure (Landolt et al. 1996; Carrier et al. 2001; Gaudreau et al. 2001; Darchia
et al. 2007). In young adults, sleep spindles typically increase over the course of the
night, but this is also attenuated in older adults (Landolt et al. 1996).

Theta and sigma power have also been shown to decrease with age (Landolt and
Borbély 2001; Carrier et al. 2001; Gaudreau et al. 2001). Age-related reductions in
spectral power are most pronounced in the frontal regions of the brain (Landolt and
Borbély 2001). These global reductions in oscillatory power, especially those in
nREM sleep, likely reduce synaptic plasticity within the aging brain; thus, there is
strong reason to predict that SDC in middle-aged and older adults is impaired (Fogel
et al. 2012).
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1.6.2 Sleep-Dependent Memory Consolidation in Middle-
Aged and Older Adults

Decline in memory is one of the greatest fears in older adults. Yet often the perceived
memory loss is not representative of the actual decline in memory capabilities in
healthy aging (Bolla et al. 1991). There is neurobiological reason to suspect a decline
in cognitive abilities with age. Age-related changes are most prominent in prefrontal
gray matter, with smaller degradations in the fusiform, inferior temporal, and
superior parietal cortices (Raz et al. 1997). Interestingly, only subtle age-related
declines in hippocampal gray matter, and no differences in parahippocampal, or
anterior cingulate gyri are observed. In addition there are functional declines in the
dopaminergic projections to the prefrontal cortex (Braver and Barch 2002),
suggesting specific impairments to cognitive control, attention, and working mem-
ory (West 1996).

Global reductions in a number of cognitive abilities are observed across middle-
aged and older adulthood. Perceptual speed, inductive reasoning, and spatial orien-
tation are significantly impaired with age (Hedden and Gabrieli 2004). Verbal
memory also declines but only later in life. However, autobiographical memory
and emotional processing skills appear to remain intact. Within the memory domain,
explicit memories show the greatest degradation with age, whereas implicit memory
formation remains stable (Fleischman et al. 2004). While memory is generally
observed to wane, it is important to assess whether sleep can benefit new memory
formation with age.

1.6.2.1 Declarative Memory

A number of studies have shown declines in SDC with age (Harand et al. 2012;
Pace-Schott and Spencer 2014). However, conflicting data, especially within the
realm of declarative memory, make it difficult to assert a comprehensive argument
about age-related changes in memory consolidation. While, compared to young
adults, overall memory performance was reduced in middle-aged or older adults,
SDC was still observed for declarative tasks – older individuals show improvements
across sleep compared to wake (Aly and Moscovitch 2010; Wilson et al. 2012).
Elderly women with greater sleep spindle density demonstrated enhanced declara-
tive memory performance compared to those with reduced sleep spindle density
(Seeck-Hirschner et al. 2012). In addition, sleep was shown to protect visuospatial
declarative memories from interference in older adults, supporting a role of sleep in
active memory stabilization (Sonni and Spencer 2015).

Comparatively, some research has shown no sleep benefit for declarative mem-
ory in aging populations. Backhaus and colleagues showed age-related reductions
in SDC of declarative memory in middle-aged adults using a word-pair associates
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task (2007). The impairments in memory were specifically associated with reduced
SWS in the first half of the night. Importantly, when younger and middle-aged
adults with similar SWS percentages were compared, there were no differences in
memory consolidation. Visuospatial declarative memory consolidation was
impaired in older adults; however, in this study, frontal SWA was associated with
improved memory recall across all individuals, including both older and younger
adults (Varga et al. 2016a). Older adults failed to demonstrate SDC of episodic
declarative memories (Scullin 2013). Further, there was a strong correlation
between SWS and episodic memory performance in younger adults, but no such
relationship was observed in the older adults.

These results were paralleled in a more recent study of napping in older and
younger adults (Baran et al. 2016). Older adults did not demonstrate a nap benefit on
a declarative word-pair task, unlike the younger adults. Moreover, younger adult
memory performance was positively correlated with the percentage of SWS and
SWA in the nap and negatively associated with post-nap hippocampal activation
during recall. This work suggests that even across a nap, systems-level restructuring
of declarative information is occurring, leading to more stable long-term memories
in younger adults. Older adult memory recall was not associated with either SWS in
the nap or with reduced hippocampal activation. The authors concluded that sleep in
older adults is less efficient at consolidating declarative memories.

To this end, recent work has examined whether enhancing SWS or oscillations in
nREM sleep would recover SDC of declarative memories in older adults (Buckley
and Schatzberg 2005). However, the results in this area of research are also
conflicting. Westerberg and colleagues used transcranial current to artificially
enhance slow oscillations during a nap in older adults in order to increase SWA
(Westerberg et al. 2015). With the application of the current, SWA was increased,
and declarative memory for word-pairs was improved. Contrarily, in another study,
no memory improvements were observed across a nocturnal sleep bout when
transcranial stimulation was applied during early SWS (Eggert et al. 2013).

1.6.2.2 Procedural Memory

The findings on SDC of procedural memories in older adults are more consistent.
Performance on procedural tasks has been shown to not be improved by sleep in
either middle-aged (Wilson et al. 2012) or older adults (Spencer et al. 2007; Brown
et al. 2009; Wilson et al. 2012). Importantly, however, most of the procedural
memory tasks used in older adults are sequence learning tasks (e.g., SRTT). There-
fore, aging may specifically impair SDC of sequential information, not necessarily
procedural skill more broadly.

In older rats, hippocampal replay of sequential information was significantly
impaired during periods of rest (Gerrard et al. 2008). While the neuronal sequences
were equivalently as active during rest in older rats as they were in younger rats, the
temporal order of this activation was impaired. Further, the reduction in temporal
order of replay was subsequently associated with impaired spatial memory. This
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implicates sequence-specific information with impairments during aging. In support
of this hypothesis, when older adults were tested on a non-sequential motor task, the
mirror tracing task, SDC was observed (Mantua et al. 2016). More research is
necessary to disentangle the relationship between sleep and procedural learning in
older adults, with especial consideration for dissociating sequential and
non-sequential information.

1.6.2.3 Emotional Memory

Lastly, few studies have examined how SDC of emotional information changes with
age. Jones and colleagues showed that sleep protected both valence ratings and
memory in older adults, but only for positive stimuli, not neutral or negative images
(2016). In contrast, sleep in younger adults preserved valence ratings and memory
for negative stimuli only.

This shift toward positivity may represent a bias toward well-being. Older adults
have a positivity bias, focusing attention and on positive as opposed to neutral or
negative stimuli (Carstensen and Mikels 2005; Mather and Carstensen 2005). With
age, cognitive performance is significantly enhanced for positive emotional infor-
mation (Carstensen and Mikels 2005), and even autobiographical memories are
reported more positively with age than they were 14 years previously (Kennedy
et al. 2004).

Age does not impair the activation of the emotional memory network during
encoding of emotional stimuli (Kensinger and Schacter 2008). However, in com-
parison with younger adults, older adults had greater memory enhancement for
positive stimuli during encoding; in addition, older adults showed greater activation
in the mPFC and cingulate gyrus during presentation of the positive images. These
authors similarly concluded that older adults might focus on more positive informa-
tion, especially in reference to themselves.

1.6.3 Summary

With the progressive degeneration of the brain, especially in the mPFC, SDC in
middle-aged and older adults becomes reduced. Reductions in SWS and SWA reflect
subsequent changes in declarative memory consolidation. However, degradation of
both the brain and sleep physiology may show strong inter-individual differences
across aging, thereby influencing inter-individual differences in SDC. For example,
when SWS in older adults parallels those in younger adults, SDC of declarative
memory remains intact (Backhaus et al. 2007). Thus, improving SWS, and enhanc-
ing nREM sleep oscillations, may be a potential future therapeutic for age-related
declines in memory.

Age-related changes in both procedural memory and emotional memory are
unique. Changes in sequential neuronal firing may impair SDC of sequential
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procedural tasks, but not procedural memory in general. Aging also changes the
prioritization of emotional information for SDC. In young adults, negative emotional
memories are prioritized for consolidation, whereas positive emotional memories are
prioritized in older adults. Despite significant changes in sleep physiology, SDC of
procedural and emotional information is not completely diminished.

1.7 Conclusions

Sleep is associated with memory consolidation across the life span. Changes in sleep
and SDC reflect developmental changes within the brain. Prenatal brain develop-
ment is reliant on sleep, and even in early infancy, sleep is associated with improved
memory performance. At the other end of the life span, as the brain begins to
progressively deteriorate, SDC is also diminished.

During early childhood development, nREM, and particularly SWS, plays the
most prominent role in SDC. As synaptic connectivity proliferates with age, SWA
subsequently increases. Memory consolidation in early childhood prioritizes explicit
and hippocampal-dependent tasks. Following the massive synaptic pruning that
occurs during puberty, SWS and SWA progressively decline. As a result, implicit
tasks begin to show SDC in late adolescence and across adulthood. With the
age-related degradation of frontal brain regions, SWS and SWA continue to decline
significantly into older adulthood. As a result, SDC of declarative information
becomes less efficient. In sum, the only times in which it is strongly debatable
whether sleep benefits declarative memory consolidation are when the most dramatic
reductions in SWS are observed: during adolescence and during older adulthood.

The functional role of other sleep stages on SDC is often debated. Primarily,
SWS, or features of nREM sleep (slow oscillations, SWA, or sleep spindles), has
been associated with all forms of memory consolidation in young children, including
procedural and emotional memories. In adults, both REM and nREM2 (sleep
spindles in nREM2 especially) have been connected with procedural memory
consolidation. However, across the life span, evidence of SDC of procedural mem-
ory consolidation is the most inconsistent of the three memory classifications
examined in this review. More recently, researchers are considering the relationship
between nREM and REM sleep with respect to memory consolidation, rather than
focus on one sleep stage in particular.

The evidence to support SDC in emotional memories is the most stable across the
life span. With the exception of infancy, an age group for which no research in this
area has yet been conducted, emotional memory consolidation is consistently dem-
onstrated to benefit from sleep. Even into older age, prioritization of the consolida-
tion of emotional memories is observed, although there is a positivity bias in
consolidation as opposed to the negativity bias observed in other age groups. With
respect to emotional memories, the most prominent SDC change across the life span
is the attribution to particular sleep stages. In childhood and early adolescence, when
the proportion of SWS is high across the night, SWS, SWA, and slow oscillations are
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associated with emotional memory consolidation. In adulthood, with progressive
declines of SWS occurring, both SWS and REM sleep are related to emotional
processing.

The aims of this review were to address how sleep changes across the life span
and how these changes influence memory consolidation. While much research has
addressed this relationship in healthy young adults, the work in other age ranges is
currently lacking. Given the dramatic changes in brain maturation and degradation
across the life span, as well as the remarkable changes in sleep architecture and
physiology, there is immense need for future research on SDC in infancy, early
childhood, adolescence, middle-aged, and older adulthood.
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